Quote:Weight loss decreases upper airway collapsibility during sleep, and this improved upper airway function can be attributed to reduced mechanical loads resulting from adiposity and/or subsequent improvements in neuromuscular control. However, the effect of weight loss on upper airway structure in OSA has received little attention in the literature. To our knowledge, this is the largest study to investigate the effects of weight loss on the upper airway and regional facial fat in obese men with OSA using volumetric analyses. Weight loss was associated with an increase in velopharyngeal airway size and reductions in facial and parapharyngeal fat volume.
Quote:This is the largest study to investigate the effects of weight loss on upper airway structure in OSA using volumetric analysis. Improved OSA in obese men after a 6-month weight loss programme was associated with a small increase in velopharyngeal airway volume mediated by an increase in lateral diameter. Although this volume increase may have contributed to the reduced upper airway collapsibility, decreased upper airway length was found to be most closely associated with AHI reduction. Regional facial fat volumes closely reflect anthropometric variables of body habitus. However, inter-individual variability in the effects of weight loss on OSA severity cannot be explained in terms of changes in upper airway structure and local fat deposition alone. Future phenotyping studies incorporating craniofacial structure, regional body fat distribution, upper airway structure and function, and lung volume are needed to ascertain the relationship between weight loss and improvement in OSA.https://thorax.bmj.com/content/66/9/797
Interesting